Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints
نویسندگان
چکیده
In this paper we consider the problem of maximizing any submodular function subject to d knapsack constraints, where d is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through extension by expectation of the submodular function. Formally, we show that, for any non-negative submodular function, an α-approximation algorithm for the continuous relaxation implies a randomized (α−ε)-approximation algorithm for the discrete problem. We use this relation to obtain an (e−1−ε)approximation for the problem, and a nearly optimal (1− e−1 − ε)−approximation ratio for the monotone case, for any ε > 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.
منابع مشابه
Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملConstrained Maximization of Non-Monotone Submodular Functions
The problem of constrained submodular maximization has long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of nonmonotone submodular maximization is not as well understood: the first approximation algorithms even for unconstrainted maximization were given by Feige et al. [FMV07]. More recently, Lee et al. [LMNS09] ...
متن کاملConstrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms
Constrained submodular maximization problems have long been studied, most recently in the context of auctions and computational advertising, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less well understood: the first approximation algorithms even for the unconstrained setting were gi...
متن کاملMaximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMaximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 38 شماره
صفحات -
تاریخ انتشار 2013